Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Applied Sciences ; 11(17):8198, 2021.
Article in English | ProQuest Central | ID: covidwho-1403540

ABSTRACT

Experts confirm that 85% of the world’s population is expected to live in cities by 2050. Therefore, cities should be prepared to satisfy the needs of their citizens and provide the best services. The idea of a city of the future is commonly represented by the smart city, which is a more efficient system that optimizes its resources and services, through the use of monitoring and communication technology. Thus, one of the steps towards sustainability for cities around the world is to make a transition into smart cities. Here, sensors play an important role in the system, as they gather relevant information from the city, citizens, and the corresponding communication networks that transfer the information in real-time. Although the use of these sensors is diverse, their application can be categorized in six different groups: energy, health, mobility, security, water, and waste management. Based on these groups, this review presents an analysis of different sensors that are typically used in efforts toward creating smart cities. Insights about different applications and communication systems are provided, as well as the main opportunities and challenges faced when making a transition to a smart city. Ultimately, this process is not only about smart urban infrastructure, but more importantly about how these new sensing capabilities and digitization developments improve quality of life. Smarter communities are those that socialize, adapt, and invest through transparent and inclusive community engagement in these technologies based on local and regional societal needs and values. Cyber security disruptions and privacy remain chief vulnerabilities.

2.
Sensors (Basel) ; 21(16)2021 Aug 18.
Article in English | MEDLINE | ID: covidwho-1367892

ABSTRACT

With the advancement of human-computer interaction, robotics, and especially humanoid robots, there is an increasing trend for human-to-human communications over online platforms (e.g., zoom). This has become more significant in recent years due to the Covid-19 pandemic situation. The increased use of online platforms for communication signifies the need to build efficient and more interactive human emotion recognition systems. In a human emotion recognition system, the physiological signals of human beings are collected, analyzed, and processed with the help of dedicated learning techniques and algorithms. With the proliferation of emerging technologies, e.g., the Internet of Things (IoT), future Internet, and artificial intelligence, there is a high demand for building scalable, robust, efficient, and trustworthy human recognition systems. In this paper, we present the development and progress in sensors and technologies to detect human emotions. We review the state-of-the-art sensors used for human emotion recognition and different types of activity monitoring. We present the design challenges and provide practical references of such human emotion recognition systems in the real world. Finally, we discuss the current trends in applications and explore the future research directions to address issues, e.g., scalability, security, trust, privacy, transparency, and decentralization.


Subject(s)
Artificial Intelligence , COVID-19 , Emotions , Humans , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL